Нужно ли колонизировать Марс — за и против. Неизвестная история Марса, секретные космические поселения Планы по освоению марса

> Колонизация Марса

Создание колонии на Марсе : как человечеству сформировать поселение на четвертой планете Солнечной системы. Проблемы, новые методы, исследования Марса с фото.

Марс предлагает крайне некомфортные условия для жизни. У него слабая атмосфера, нет защиты от космических лучей и отсутствует воздух. Но у него есть и много общего с нашей Землей: наклон оси, структура, состав и даже небольшое количество воды. Это означает не только то, что ранее на планете была жизнь, но и то, что у нас есть шанс колонизировать Марс. Вот только понадобится огромное количество ресурсов и времени! Как выглядит план колонизации Марса?

Проблем много. Начнем с тонкого слоя марсианской атмосферы, состав которой представлен углекислым газом (96%), аргоном (1.93%) и азотом (1.89%).

Колебания атмосферного давления охватывают 0.4-0.87 кПа, что приравнивается к 1% на уровне земного моря. Все это приводит к тому, что мы сталкиваемся с холодной обстановкой, где температура способна падать к -63°C.

На Марсе нет защиты от опасного космического излучения, поэтому доза составляет 0.63 мЗв в день (1/5 от количества, которое мы получаем на Земле за год). Поэтому придется нагреть планету, создать атмосферный слой и изменить состав.

Колонизация Марса в художественной литературе

Впервые Марс фигурирует в художественном произведении в 1951 году. Это был роман Артура Кларка «Пески Марса», где рассказывается о поселенцах, прогревающих планету для создания жизни. Одной из наиболее популярных книг считается «Озеленение Марса» от Д. Лавлока и М. Албаби (1984 год), с описанием постепенного превращения марсианской среды в земную.

В истории 1992 года Фредерик Похл использовал кометы из Облака Оорта, чтобы создать атмосферу и водные запасы. В 1990-х гг. появляется трилогия от Кима Робинсона: «Красный Марс», «Зеленый Марс» и «Голубой Марс».

В 2011 году возникла японская манга от Ю Сасуга и Кеничи Тачибана, где отображены современные попытки трансформировать Красную планету. А в 2012 году появился рассказ от Кима Робинсона, где говорится о колонизации всей Солнечной системы.

Рассматриваемые методы колонизации Марса

За последние десятилетия возникало множество предложений о способах создания колоний на Марсе. В 1964 году Дандридж Коул выступал за активацию парникового эффекта – доставка аммиачных льдов на поверхность планеты. Это мощный парниковый газ, поэтому должен загустить атмосферу и повысить температуру Красной планеты.

Еще один вариант – уменьшение альбедо, где марсианскую поверхность покроют темным материалом, чтобы сократить поглощение звездных лучей. Эту идею поддерживал Карл Саган. В 1973 году он даже предложил два сценария для этого: доставка низколегированного материала и посадку темных растений на полярных территориях, чтобы расплавить ледяные шапки.

В 1982 году Кристофер Маккей написал статью о концепции саморегулируемой марсианской биосферы. В 1984 году Д. Лавлок и М. Албаби предложили импортировать хлорфторуглероды, чтобы создать глобальное потепление.

В 1993 году Роберт Зубрин и Кристофер Маккей предложили разместить орбитальные зеркала, которые бы увеличили нагрев. Если расположить их возле полюсов, то можно было бы расплавить ледяные запасы. Также они голосовали за использование астероидов, которые при ударах накаляют атмосферу.

В 2001 году поступила рекомендация о применении фтора, который в качестве парникового газа в 1000 раз эффективнее СО 2 . Причем эти материалы можно добывать на Красной планете, а значит можно обойтись без земных поставок. Нижний рисунок демонстрирует концентрацию метана на Марсе.

Также предлагали доставлять метан и прочие углеводороды из внешней системы. Их много на Титане. Есть идеи по созданию закрытых биодомов, где будут использовать кислородосодержащие цианобактерии и водоросли, посаженные в марсианскую почву. В 2014 году проводили первые испытания и ученые продолжают развивать концепцию. Такие конструкции способны создать определенные кислородные запасы.

Потенциальные преимущества колонизации Марса

Начнем с того, что колонизация Марса - вызов всему человечеству, которое снова попытается посетить совершенно чужой мир. Но причина создания человеческой колонии заключается не только в научном азарте и человеческом эго. Дело в том, что наша планета Земля не бессмертна. Случайный сбой орбитального пути у астероида и нам конец. А в перспективе также расширение Солнца до состояния красного гиганта, который поглотит нас или поджарит. Не будем забывать о риске глобального потепления, перенаселения и эпидемии. Согласитесь, разумно подготовить себе путь к отступлению.

Тем более, Марс – выгодный вариант. Это планета земного типа, расположенная в пределах зоны обитаемости. Роверы и зонды подтвердили наличие воды, а также ее обилие в прошлом.

Нам удалось познакомиться с марсианским прошлым. Оказывается, 4 млрд. лет назад на поверхности была вода, а атмосферный слой был намного плотнее. Но планета потеряла это из-за серьезного удара или стремительного падения температуры во внутренней части.

Среди причин также называют необходимость расширения источников добычи ресурсов. Марс располагает изобилием льда и минералов. К тому же колония станет промежуточным пунктом между нами и поясом астероидов.

Проблемы при колонизации Марса

Да, нам придется крайне нелегко. Начнем с того, что трансформация требует использования огромного количества ресурсов, как человеческих, так и технологических. Есть также риск, что любое наше вмешательство пойдет не по сценарию. К тому же на это уйдут не годы и не десятилетия. Речь ведь идет не о простом создании защитных укрытий, а изменении атмосферного состава, создании водяного покрова и т.д.

Мы точно не знаем, сколько земных организмов потребуется и смогут ли они адаптировать к новым условиям, чтобы создать свою экологию. Формирование атмосферы с кислородом и озоном возможно за счет фотосинтезирующих организмов. Но на это уйдут миллионы лет!

Но сроки можно сократить, если вывести специальную разновидность бактерий, которая уже приспособлена к экстремальным условиям Красной планеты. Но даже тогда счет идет на века и тысячелетия.

Есть также нехватка в инфраструктуре. Мы говорим об аппаратах, способных добывать необходимые материалы на чужих планетах и спутниках. Это значит, что их полеты должны осуществляться в приемлемых для нас временных рамках. Современные двигатели не соответствуют этим задачам.

У Новых Горизонтов ушло 11 лет для прибытия к Плутону. Ионный двигатель Рассвета доставил аппарат к Веста (в поясе астероидов) за 4 года. Но это совершенно не практично, ведь мы собираемся отправлять их туда-обратно, как конвейер по доставке.

Есть также другой момент. Мы не знаем, есть ли на планете живые организмы, поэтому наша трансформация нарушит их естественную среду. В итоге, мы просто станем виновниками геноцида.

Так что в долгосрочной перспективе освоение Марса – выгодная идея. Но она не подойдет тем, кто мечтает справиться за десятилетие. Тем более, что любая миссия будет рискованная, если не жертвенная. Найдутся ли смельчаки?

Однако опрос показал, что сотни тысяч людей согласны отправиться в поездку в один конец. Да и многие агентства заявляют о своем желании принять участие в колонизации. Как видите, все-таки научный азарт и неизвестность притягивают к себе и заставляют нас углубляться в пространство и открывать новые горизонты.

Пилотируемая орбитальная космонавтика - своеобразный тест для страны на звание сверхдержавы. Для человечества подобным испытанием может стать освоение ближайших космических тел Солнечной системы. Например, полет на Марс и колонизация планеты.

Зачем человечеству мегапроект

В последние годы целесообразность полетов в космос рассматривается с коммерческих и военно-оборонных позиций. Усугубление мирового экономического кризиса свело к минимуму количество научных проектов. По-прежнему ждут своих исследователей наши ближайшие "соседи" - Луна и Марс. Колонизация любого из этих космических тел очень важна для формирования новых долгосрочных перспектив существования человечества. Стало очевидным, что развитие космонавтики в рамках конкурентной борьбы между державами не способно вывести научно-технический прогресс на качественно новый виток.

Колонизация Марса - это не государственный или национальный проект. Это хороший мотивационный вызов всей земной общепланетной цивилизации.

Почему Марс

Ну, хотя бы потому, что еще в 1963 году в фильме "Мечте навстречу" песня, исполненная В. Трошиным, утверждала о скором цветении яблонь на соседней планете. А теперь серьезно.

Продолжительность суток на Марсе приблизительно равна земной (24,6 часа). Один оборот вокруг Солнца занимает около 687 сут. с выраженной сменой времен года. Климат на планете суше и холоднее. Температура на поверхности, с учетом сезонных и суточных изменений, лежит в диапазоне от -140˚С до +20˚С (среднее значение -50˚С). Толщина атмосферы в 110 км значительно снижает влияние радиоактивного солнечного излучения. И хотя большую часть воздушной оболочки составляет углекислый газ (95%), присутствуют основные элементы, которые потребуются для жизнеобеспечения людей.

Если рассматривать в качестве объектов для экспансии Луну и Марс, колонизация спутника Земли не способна обеспечить устойчивую эволюцию будущей цивилизации. Хороший пример из истории - исследование Гренландии и Американского континента в эпоху Великих географических походов. Крупнейший остров, безусловно, ближе к Европе и известен давно, но чрезвычайно бедная среда исключает всякий потенциал развития.

Кроме благородной задачи объединения человечества и консолидации усилий всех государств для реализации заселения "красной планеты", в ходе проекта будут решены многие проблемы настоящего и будущего нашей космической колыбели:

  • Сохранение цивилизации и культурного наследия в случае глобального природного катаклизма на Земле.
  • Функционирование инопланетных колоний потребует вывести на качественно новый уровень не только промышленные технологии, но и социальные. Потребуется разработка и создание принципиально новых общественных отношений.
  • Внешняя космическая база станет хорошим стартовым плацдармом для полета и изучения дальних окрестностей Солнечной системы.
  • Колонизация Марса - один из вариантов решения демографических проблем и существенного расширения ресурсной базы.
  • Красная планета - прекрасный полигон для испытания новых источников энергии, развития планетарной инженерии, практики управления климатом и т. д.

Может быть, с коммерческой точки зрения, не обещает сиюминутной прибыли колонизация Марса. Космос таит еще немало загадок, разочарований и открытий.

С чего начать

Как это не банально звучит - с подробного исследования планеты. По статистике, более 2/3 всех запусков космических зондов к Марсу заканчивались неудачей. На сегодняшний день шесть межпланетных автоматических станций находятся на марсианских орбитах, поверхность планеты бороздят два марсохода и этого явно недостаточно. Необходимо тщательное изучение атмосферы, ландшафта, ресурсообеспеченности планеты, хотя бы в местах предполагаемой высадки.

Наиболее перспективными для освоения, по мнению ученых, считаются экваториальные районы Марса, а разведанные запасы воды (в виде льда) сосредоточены в высоких широтах. Если дальнейшее исследование гидросферы планеты не принесет положительных результатов, то обеспечение водными ресурсами первых переселенцев может стать серьезной проблемой.

Нет проблем - есть задачи

Специалисты утверждают, что при соответствующем финансировании проекта можно хоть завтра лететь на Марс. Колонизация предполагает решение нескольких очень важных вопросов.

Стоит продумать варианты адаптации переселенцев к гравитации планеты. Она существенно ниже привычной землянам (38%). Для человека это грозит атрофией мышечной ткани и снижением плотности костных формирований. Дегенеративные изменения могут привести к возникновению серьезного заболевания - остеопороза.

Атмосфера красной планеты на порядок тоньше земной и практически отсутствует магнитное поле. Если не применять средства защиты, за пару дней на Марсе можно получить такую же дозу радиации, как на Земле за год.

Еще одна трудность - огромное расстояние. Земные технологии не позволяют достигнуть ближайшей внешней планеты быстрее, чем за 250 суток. Работы над созданием более эффективных двигателей для такого перелета ведутся в частной корпорации SpaceX. Минимальное время обмена радиосообщениями между Землей и марсианской станцией - 6,2 мин. (максимальное - до 45 мин.).

Перечисленные негативные факторы в осуждении проекта часто использует общественная критика. Колонизация Марса должна стартовать именно с проработки этих вопросов.

Словом и делом

Вариантов и проектов заселения марсианских просторов очень много. Основатель и главный инженер компании SpaceX (США) - Илон Маск, на прошедшем 67 Конгрессе Международной астронавтической федерации (2016 г, Гвадалахара, Мексика), поделился планами по освоению Марса. В 2018 году стартует миссия Red Dragon, которая отправит на планету первые грузы и оборудование. Готова проектная документация на корабль, способный доставить до 100 колонизаторов и 450 тонн багажа. Ресурс корабля - до 15 полетов на Марс. Колонизация, по варианту SpaceX, займет от 40 до 100 лет, к концу которых численность населения инопланетной базы может достигнуть миллиона человек. Илон Маск убежден, что первые люди ступят на красную планету не позднее 2022 года.

Колонизация онлайн

О серьезных намерениях своего "детища" заверяет руководитель частного проекта Mars One Бас Лансдорп (Нидерланды). В основе финансирования - доход от телетрансляций отбора добровольцев, наземной подготовки, полета и высадки на Марс ("Дом-2" в космических масштабах).

К 2015 году из более 200 тыс. желающих распрощаться с Землей, отобрано 100 кандидатов, среди которых 5 россиян. Результатом дальнейших испытаний станет комплектование шести групп по 4 человека. На 2018 год запланирован запуск межпланетного спутника связи. Затем с интервалами в два года на Марс отправится автоматизированный марсоход и грузовой корабль жизнеобеспечения. Экипажи планируется отправлять с тем же интервалом. Первый высадится на красных просторах, по планам организаторов, в 2025 году.

Многие специалисты критически относятся не только к технической составляющей проекта, но и к финансовой и организационной.

Проект №11

Отечественные политические деятели и научно-техническая элита также убеждены, что хорошим стимулом для развития России послужила бы колонизация Марса. "Проектное государство" - портал общественных инициатив по созданию мощной мировой державы, отводит этому проекту ведущую роль в работе Дальневосточного Космического Центра (космодром "Восточный").

По мнению основателя и организатора ресурса Юрия Крупнова, наша страна утратила лидерство в освоении космического пространства, удовлетворившись ролью "космического извозчика". В США и Европе идет стремительное обновление ракетно-космического парка. Собственные мощные ракетоносители позволят западным партнерам оставить Россию "за бортом" многих международных программ. Обидно, что ни у "Роскосмоса", ни у правительства нет никакой стратегической программы космических исследований.

P.S. Будем надеяться, что "Фобос Грунт 2" благополучно проведет свою миссию, а не сгорит в плотных слоях атмосферы (как его предшественник под №1) в самом начале пути!

Mars One - частный проект, о котором вы неоднократно слышали, руководимый Басом Лансдорпом и предполагающий полет на Марс с последующим основанием колонии на его поверхности и трансляцией всего происходящего по телевидению.


Эту статью вы прочитаете за 20 минут вместе с разглядыванием картинок.

План проекта

2011 - старт проекта, все поставщики оборудования подтверждают свою готовность принять участие;
2013 - начало международного отбора астронавтов;
2015 - начало технической и психологической подготовки отобранных 24 кандидатов, получение навыков выживания в изолированной среде и в условиях, приближенных к марсианским;
2018 - в мае будет запущена демонстрационная миссия: отправка посадочного модуля для проверки солнечных батарей, технологии извлечения воды из марсианского грунта, а также запуск коммуникационного спутника, который 24 часа в сутки, 7 дней в неделю будет передавать изображения, видео и другие данные с поверхности Марса;
2020 - запуск второго спутника связи на орбиту вокруг Солнца (точка L5, для обеспечения бесперебойного потока), оборудования для строительства колонии и беспилотного марсохода с прицепом, который выберет лучшее место для поселения и подготовит поверхность Марса для прибытия груза и размещения солнечных панелей;
2022 - в июле будет запущено 6 грузов: 2 жилых блока, 2 блока с системами жизнеобеспечения, 2 грузовых/складских блока;
2023 - в феврале грузы совершат посадку на Марс рядом с марсоходом, он начинает готовить базу для прибытия людей: доставляет блоки на выбранное место, активирует системы энергопитания и жизнеобеспечения, создающие запасы воды (3000 литров) и кислорода (120 кг);
2024 - в апреле-мае на орбиту Земли будут отправлены: транзитный модуль, корабль MarsLander (посадочный модуль) со «сборочным» экипажем на борту и 2 разгонных ступени. В сентябре первая четвёрка миссии сменяет «сборочный» экипаж и, после последней проверки системы на Марсе и транзитного модуля, состоится запуск первого пилотируемого корабля на Марс. Одновременно отправляется груз для обеспечения жизни второго экипажа;
2025 - в апреле первый экипаж в посадочном модуле высаживается на Марсе (транзитный останется летать по орбите вокруг Солнца). После восстановления и акклиматизации «поселенцы» установят дополнительные солнечные панели, соберут все модули, включая 2 жилых блока и 2 системы жизнеобеспечения для второго экипажа, в единую марсианскую базу и начнут обживать свой новый инопланетный дом;
2027 - в июле высадка следующей группы людей из 4 человек, новые модули, вездеходы и оборудование. И так каждые два года;
2035 - население колонии должно достигнуть 20 человек. (Источник: Mars One - Roadmap)

Отбор колонистов

Бас Лансдорп - соучредитель и руководитель проекта Mars One.
В 2013 году Mars One начали отбор будущих астронавтов, которые будут обучаться необходимым навыкам, будут проходить тесты на длительное нахождение в закрытом пространстве в симуляторах ракеты и колонии. В состав группы астронавтов обязательно будут входить оба пола. Минимальный возраст для подачи заявления на участие - 18 лет, максимальный - 65 лет; подать заявление могут граждане любых стран. Приоритет имеют высокообразованные, умные, здоровые люди с научно-техническим образованием. Заявки на участие начали приниматься в первом квартале 2013 года. Процедура подачи заявки является бесплатной, однако, для подтверждения серьезности намерений кандидата необходимо внести пожертвование в размере до 40 долларов США, в зависимости от государства, в котором живет человек. В июне 2013 на сайте проекта зарегистрировалось более 85 тысяч человек со всей Земли, выразив таким образом свое желание полететь на Марс, многие из них подали заявление на участие в отборе; в августе число желающих превысило 100 тыс. человек, а позднее составило более 165 тыс. Окончание первого этапа отбора планировалось на конец августа 2013 года. Затем, как заявляют на официальном сайте проекта, будут проведены локальные встречи с участниками, в их государствах. Окончательное решение о том, кто полетит на Марс, и о том, кто будет первым человеком, ступившим на Марс, оставлено зрителям (из науки делают шоу).

Тот самый Бас Лансдорп

Первый тур

9 сентября 2013 года руководители проекта Mars One сообщили о завершении первого тура сбора заявок на участие в опыте по колонизации Марса. За пять месяцев желание принять участие в миссии «невозвращенцев» выразили 202 586 человек из 140 стран мира.

Больше всего заявок поступило из США - 24 %. На втором месте находится Индия с 10 % от общего числа запросов, далее следуют: Китай (6 %), Бразилия (5 %), Великобритания (4 %), Канада (4 %), Россия (4 %), Мексика (4 %), Филиппины (2 %), Испания (2 %), Колумбия (2 %), Аргентина (2 %), Австралия (1 %), Франция (1 %), Турция (1 %), Чили (1 %), Украина (1 %), Перу (1 %), Германия (1 %), Италия (1 %) и Польша (1 %).

Из общего количества кандидатов отборочный комитет Mars One отберёт потенциальных поселенцев. Прошедшие первый тур получили уведомления об этом в январе 2014 года. В ближайшие два года будет проведено еще три дополнительных отборочных тура, и к 2015 году планируется отобрать 6-10 групп по четыре человека.

По результатам первого тура было отобрано 1058 (из более чем 200 000) человек из 107 стран. В том числе жители США - 297 человек, Канады - 75, Индии - 62, России - 52 человека. Из Польши первый этап отбора прошли 13 человек, из Украины 10, из Белоруссии 5 (трое мужчин и две женщины), из Литвы два, а из Латвии один.

Второй тур

30 декабря 2013 года Mars One анонсировал второй тур программы отбора космонавтов. Кандидаты, прошедшие во второй тур, прошли комплексное медицинское обследование и представили результаты отборочной комиссии Mars One до 8 марта 2014. По результатам мед. обследования из 1058 человек осталось 705 - из 99 стран. Из оставшихся кандидатов больше всего - жителей США - 204 человека, Канады - 54, Индии - 44, России - 36, Австралии - 27, Великобритании - 23. По уровню образования: 23 человека - младшие специалисты, 9 - юристы, 12 - медики, 253 - не имеют научной степени, 229 - бакалавры, 114 - магистры и 65 - кандидаты наук.

Также Mars One начинает работу по моделированию марсианской базы для будущих колонистов. Руководителем проекта назначен Кристиан фон Бенгтсон.

Техническая подготовка

2 астронавта должны быть специалистами в области использования и ремонта всего оборудования, чтобы быть в состоянии выявлять и решать технические проблемы.

2 астронавта получат обширную медицинскую подготовку, чтобы иметь возможность лечить как незначительные, так и серьезные проблемы со здоровьем, в том числе оказания первой помощи и использования медицинского оборудования, которое будет доставлено вместе с ними на Марс. Их обучение и подготовка займет все время между включением их в программу и отправкой на Марс.

1 человек будет тренироваться для исследования геологии Марса .

еще 1 получит опыт в экзобиологии, поиске жизни за пределами Земли и изучении влияния внеземной среды на живые организмы.
Другие специальности, такие как физиотерапия, психология и электроника, будут общими для всех астронавтов в каждой из начальных групп.

Полёт к Марсу

Полёт к Марсу: переходная орбита Гомана - Ветчинкина.
Подходящие сроки запусков к Марсу ограничены наиболее благоприятным взаимным расположением планет, и будут осуществляться по орбите Гомана - Ветчинкина (Гомановская траектория). Стартовое окно открывается каждые 2 года. Полёт пилотируемого корабля к Марсу займёт около 7 месяцев (~210 дней), для минимизации воздействия космического излучения на организмы членов экипажа. Грузовые миссии могут длиться и дольше, для экономии топлива.

Посадочный модуль

В начале 2014 года Mars One начала подготовку посадочного модуля, который отправится на Марс в рамках первого этапа первой частной миссии. Базой посадочного модуля Mars One станет посадочный модуль NASA Phoenix, который совершил посадку на Марс в 2008 году и был разработан и изготовлен компанией Lockheed Martin. Правда, состав научного оборудования модуля Mars One будет существенно отличаться от состава оборудования модуля Phoenix, и для модуля Mars One потребуется большее количество энергии. Это станет причиной того, что солнечные батареи нового модуля будут иметь большую площадь и несколько другую форму, нежели батареи модуля-предшественника.

Связь планируется осуществлять при помощи спутников, расположенных на орбите вокруг Солнца, Марса и Земли. Минимальное расстояние от Земли до Марса - 55 миллионов километров, максимальное - 400 миллионов километров, когда Марс не скрыт от Земли Солнцем. Скорость сигнала связи равна скорости света, минимальное время до прибытия сигнала - 3 минуты, максимальное - 22. Когда Марс скрыт от Земли Солнцем, связь невозможна. Будут доступны текстовые, аудио- и видеосообщения. Пользование Интернетом ограничено ввиду длительной задержки сигнала, однако предполагается наличие у колонистов сервера с презагруженными данными, которые они могут в любое время просматривать и которые должны временами синхронизироваться с земными. Жизнь колонистов будет транслироваться на Землю круглые сутки.

Радиация и облучение колонистов

Данные, полученные аппаратурой на борту транзитной капсулы, доставившей марсоход Curiosity, показали, что радиоактивное облучение для миссии постоянного поселения будет находиться в пределах установленных границ, принятых космическими агентствами.

Радиация на пути к Марсу

В исследованиях, опубликованных в журнале Science в мае 2013, подсчитано, что радиоактивное облучение за 360-дневный полёт туда и обратно составляет 662 +/- 108 миллизивертов (мЗв) - как измерения детектором радиоактивной экспертизы (RAD) (англ.). Исследования показывают, что 95 % радиации, принятой прибором RAD приходится на галактические космические лучи, от которых трудно защититься без использования непозволительно большой экранирующей массы. В 210-дневном путешествии поселенцы Mars One получат дозу радиации, равную 386 +/- 63 мЗв, учитывая за стандарт самые свежие данные измерений. Облучение будет ниже верхней границы принятых норм в карьере космонавтов: в Европейском, Российском и Канадском Космических Агентствах предел составляет 1000 мЗв, в НАСА - 600-1200 мЗв, в зависимости от пола и возраста.

Радиационное убежище в марсианской транзитной капсуле

На пути к Марсу команда будет защищена от солнечных частиц конструкцией космического корабля. Экипаж получит общую экранирующую защиту в 10-15 гр/см² для всего корабля в течение всего полёта. В случае солнечных вспышек или всплесков солнечной радиации этого экранирования будет недостаточно, и космонавты, получив сигнал от бортового дозиметрического контроля и системы тревожного оповещения, будут пережидать в более защищённой части корабля. Выделенное радиационное убежище будет окружено резервуаром с водой, что обеспечит дополнительную защиту на уровне 40 гр/см². Космонавтам следует ожидать всплески солнечной радиации в среднем 1 раз в 2 месяца - всего около 3 или 4 за всё время полёта, при этом каждый из них обычно длится не больше пары дней.

Радиация на Марсе

Марсианская поверхность получает больше радиации, чем земная, но и там радиация также в значительной мере блокируется. Радиоактивное облучение на поверхности - 30 мкЗв (микрозивертов) в час в период солнечного минимума, во время солнечного максимума доза эквивалентного облучения понизится на фактор два. (ДЛЯ ВАШЕГО ПОНИМАНИЯ: «В России требование обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации». Среднемировая доза облучения от рентгенологических исследований, накопленная на душу населения за год, равна 0,4 мЗв, однако в странах с высоким уровнем доступа к медобслуживанию (более одного врача на 1000 человек населения) этот показатель растёт до 1,2 мЗв.) Если поселенцы станут проводить около трёх часов из 3 суток на поверхности Марса вне жилого комплекса, их собственное облучение составит 11 мЗв в год. Жилые модули Mars One будут покрыты несколькими метрами почвы , что обеспечит надёжную защиту даже от галактического космического излучения. 5 метров грунта обеспечат защиту, идентичную земной атмосфере и эквивалентную экранированию 1000 гр/см². С помощью системы прогнозирования в убежище в жилых модулях можно будет избегать всплесков солнечной радиации.

Суммарное облучение

210-дневный полёт приведёт к облучению в 386 +/- 63 мЗв. На поверхности колонисты будут получать дозу радиации в 11 мЗв в год - в ходе их деятельности «под открытым небом». Это означает, что поселенцы смогут провести около шестидесяти лет на Марсе до превышения ограничений, принятых в ЕКА в их карьере космонавтов.

На этом месте можете налить себе чаю, дальше будет интереснее=)

Предполагаемая картина формирования жизни на Марсе


…и вид Марса после терраформирования:

Цели колонизации

В качестве целей колонизации Марса называются следующие:
-Создание постоянной базы для научных исследований самого Марса и его спутников, в перспективе - для изучения пояса астероидов и дальних планет Солнечной Системы.
-Промышленная добыча ценных полезных ископаемых.
-Решение демографических проблем Земли.
-«Колыбель Человечества» на случай глобального катаклизма на Земле.
Основным лимитирующим фактором является, прежде всего, крайне высокая стоимость доставки колонистов и грузов на Марс.

На текущий момент и ближайшее будущее, очевидно, актуальна только первая цель. Ряд энтузиастов идеи колонизации Марса считает, что при больших первоначальных затратах на организацию колонии в перспективе, при условии достижения высокой степени автономии и организации производства части материалов и предметов первой необходимости (прежде всего - кислород, вода, продукты питания) из местных ресурсов этот путь ведения исследований окажется в целом экономически эффективнее, чем отправка возвращаемых экспедиций или создание станций-поселений для работы вахтовым методом. Кроме того, в перспективе Марс может стать удобным полигоном для проведения масштабных научных и технических экспериментов, опасных для земной биосферы.

Что касается добычи полезных ископаемых, то, с одной стороны, Марс может оказаться достаточно богат минеральными ресурсами, причём из-за отсутствия свободного кислорода в атмосфере возможно наличие на нём богатых месторождений самородных металлов, с другой - на текущий момент стоимость доставки грузов и организации добычи в агрессивной среде (непригодная для дыхания разрежённая атмосфера и большое количество пыли) настолько велика, что никакое богатство месторождений не обеспечит окупаемости добычи.

Для решения демографических проблем потребуется, во-первых, переброска с Земли населения в масштабах, несопоставимых с возможностями современной техники (как минимум - миллионы человек), во-вторых - обеспечение полной автономии колонии и возможности более-менее комфортной жизни на поверхности планеты, для чего потребуется создание на ней пригодной для дыхания атмосферы, гидросферы, биосферы и решение проблем защиты от космического излучения. Сейчас всё это можно рассматривать лишь умозрительно, как перспективу на отдалённое будущее.

Пригодность для освоения

Марсианские сутки составляют 24 часа 39 минут 35,244 секунды , что очень близко к земным.
Площадь поверхности Марса составляет 28,4 % земной - чуть меньше площади суши на Земле (которая составляет 29,2 % от всей земной поверхности).
Наклон оси Марса к плоскости эклиптики составляет 25,19°, а земной - 23,44°. В результате этого на Марсе, как на Земле, есть смена времён года, хотя она и происходит почти в два раза дольше, поскольку марсианский год в 1,88 раза длиннее земного.
У Марса есть атмосфера. Несмотря на то, что её плотность составляет всего 0,007 земной, она даёт некоторую защиту от солнечной и космической радиации, а также была успешно использована для аэродинамического торможения космического летательного аппарата.
Недавние исследования НАСА подтвердили наличие воды на Марсе. Таким образом, условия на Марсе, похоже, достаточны для поддержания жизни.
Параметры марсианского грунта (соотношение pH, наличие необходимых для растений химических элементов, и некоторые другие характеристики) близки к земным, и на марсианской почве теоретически можно было бы выращивать растения.
Химический состав распространённых на Марсе минералов разнообразнее, чем у других небесных тел поблизости от Земли. По мнению корпорации 4Frontiers, их достаточно для снабжения не только самого Марса, но и Луны, Земли и астероидного пояса.
На Земле есть места, в которых природные условия похожи на марсианские. На экваторе Марса в летние месяцы бывает так же тепло (+20 °C) , как и на Земле. Также на Земле есть пустыни, схожие по виду с марсианским ландшафтом.

Различия с Землей

Сила тяжести на Марсе примерно в 2,63 раза меньше, чем на Земле (0,38 g). До сих пор неизвестно, достаточно ли этого, чтобы избежать проблем для здоровья, возникающих при невесомости.
Температура поверхности Марса гораздо ниже земной. Максимальная отметка составляет +30 °C (в полдень на экваторе), минимальная - −123 °C (зимой на полюсах). При этом температура приповерхностного слоя атмосферы - всегда ниже нуля.
На поверхности Марса пока не обнаружено воды в жидком агрегатном состоянии.
В силу того, что Марс находится дальше от Солнца, количество достигающей его поверхности солнечной энергии примерно вдвое меньше , чем на Земле.
Орбита Марса имеет больший эксцентриситет, что увеличивает годовые колебания температуры и количества солнечной энергии.
Атмосферное давление на Марсе слишком мало, чтобы люди могли выжить без пневмокостюма. Жилые помещения на Марсе придётся оборудовать шлюзами, наподобие устанавливаемых на космических кораблях, которые могли бы поддерживать земное атмосферное давление.
Марсианская атмосфера состоит в основном из углекислого газа (95 %). Поэтому, несмотря на её малую плотность, парциальное давление CO2 на поверхности Марса в 52 раза больше чем на Земле, что, возможно, позволит поддерживать растительность.
У Марса есть два естественных спутника, Фобос и Деймос. Они гораздо меньше и ближе к планете, чем Луна к Земле. Эти спутники могут оказаться полезными при проверке средств колонизации астероидов.
Магнитное поле Марса слабее земного примерно в 800 раз. Вместе с разрежённой (в сотни раз в сравнении с Землёй) атмосферой это увеличивает количество достигающего его поверхности ионизирующего излучения.
Обнаружение аппаратом Феникс, приземлившимся вблизи Северного полюса Марса в 2008 году, в грунте Марса перхлоратов ставит под сомнение возможность выращивания в марсианской почве земных растений без дополнительных экспериментов либо без искусственного грунта.
Радиационный фон на Марсе в 2,2 раза превышает радиационный фон на Международной космической станции и приближается к установленным пределам безопасности для космонавтов.
Вода, вследствие низкого давления, закипает на Марсе уже при температуре +10 °C. Другими словами вода изо льда, минуя жидкое состояние, сразу же превращается в пар.

Принципиальная достижимость

Время полёта с Земли до Марса (при нынешних технологиях) составляет 259 суток по полуэллипсу и 70 - по параболе. В принципе, доставка на Марс необходимого минимума снаряжения и припасов на начальный период существования небольшой колонии не выходит за пределы возможностей современной космической техники, с учётом перспективных разработок, срок реализации которых оценивается в одно-два десятилетия. На текущий момент принципиальной нерешённой проблемой остаётся защита от излучений во время перелёта; в случае её решения сам перелёт (в особенности, если он будет производиться «в одну сторону») вполне реален, хотя и требует вложения огромных финансовых средств и решения целого ряда научных и технических вопросов различного масштаба.

При этом необходимо заметить, что «стартовое окно» для полёта между планетами открывается один раз в 26 месяцев . С учётом времени перелёта даже в самых идеальных условиях (удачное расположение планет и наличие транспортной системы в состоянии готовности) ясно, что в отличие от околоземных станций или лунной базы марсианская колония в принципе не будет иметь возможности получить оперативную помощь с Земли или эвакуироваться на Землю в случае возникновения нештатной ситуации, с которой невозможно справиться своими силами. Вследствие вышеизложенного, просто для выживания на Марсе колония должна иметь гарантированный срок автономии не менее трёх земных лет. С учётом возможности в течение этого срока самых различных нештатных ситуаций, аварий оборудования, природных катаклизмов ясно, что для обеспечения выживаемости колония должна иметь значительный резерв оборудования, производственных мощностей во всех отраслях собственной промышленности и, что на первых порах самое главное - энергогенерирующих мощностей, так как и всё производство, и вся сфера жизнеобеспечения колонии будет остро зависеть от наличия электроэнергии в достаточных количествах.

Условия обитания

Без защитного снаряжения человек не сможет прожить на поверхности Марса и нескольких минут. Тем не менее, по сравнению с условиями на жарких Меркурии и Венере, холодных внешних планетах и лишённых атмосферы Луне и астероидах, условия на Марсе гораздо более пригодные для освоения. На Земле есть такие разведанные человеком места, в которых природные условия во многом похожи на марсианские. Атмосферное давление Земли на высоте 34 668 метров - рекордная по высоте точка, которой достиг воздушный шар с командой на борту (4 мая 1961 г.) - приблизительно вдвое превышает максимальное давление на поверхности Марса.

Результаты последних исследований показывают, что на Марсе имеются значительные и при этом непосредственно доступные залежи водяного льда, почва, в принципе, пригодна для выращивания растений, а в атмосфере присутствует в достаточно большом количестве диоксид углерода. Всё это в совокупности позволяет рассчитывать (при наличии достаточного количества энергии) на возможность производства растительной пищи, а также добычи воды и кислорода из местных ресурсов, что значительно снижает потребность в технологиях замкнутого цикла жизнеобеспечения, который был бы необходим на Луне, астероидах или на удалённой от Земли космической станции.


Основные сложности

Главные опасности, подстерегающие космонавтов во время полета к Марсу и пребывания на планете, следующие:
-высокий уровень космической радиации.
-сильные сезонные и суточные колебания температуры.
-метеоритная опасность.
-низкое атмосферное давление.
-пыль с высоким содержанием перхлоратов и гипса.
-высочайшая сложность посадки на поверхность, включающая в себя как минимум четыре обязательных стадии:

торможение двигателями до входа в атмосферу
торможение об атмосферу
торможение двигателями в атмосфере
посадка на огромные сложные подушки безопасности или с помощью уникального крана

Возможные физиологические проблемы при нахождении на Марсе у экипажа будут следующие:
-стресс;
-адаптация к марсианской гравитации;
-ортостатическая неустойчивость после посадки на планету;
-нарушения деятельности сенсорных систем;
-нарушения сна;
-снижение работоспособности;
-изменения метаболизма;
-отрицательные эффекты от воздействия космической радиации.

Основные задачи для терраформирования Марса

Повышение давления атмосферы до уровня, при котором вода могла бы существовать в жидком виде - необходимое условие для создания биосферы земного типа. Это также резко снизит опасность для людей, так как позволит отказаться от скафандров, заменив их на высотно-компенсационный костюм и кислородный аппарат (при имеющемся давлении на поверхности Марса в случае серьёзного повреждения оболочки скафандра или разгерметизации убежища у человека практически нет шансов на спасение).
Повышение температуры в экваториальной части планеты до +10° - +20°С (с помощью парникового эффекта, созданного перфторуглеродными соединениями).
Создание аналога озонового слоя для защиты от ультрафиолетового излучения.
Создание биосферы.
Усиление магнитного поля планеты.
Создание и поддержание условий для работы терраформеров.
Селекционирование человека для способности адаптироваться к условиям Марса.

Управляемое обрушение на поверхность Марса кометы, астероида из Главного пояса (например, Цереры) или одного из спутников Юпитера, с целью разогреть атмосферу и пополнить её водой и газами.

Церера слева внизу

Вывод на орбиту спутника Марса массивного тела, астероида из Главного пояса (например, Весты) с целью активации эффекта планетарного «динамо», и усиления собственного магнитного поля Марса.

Веста, диаметр 530 км по длинной оси,

летает вокруг солнца между Марсом и Юпитером в Поясе астероидов

Изменение магнитного поля с помощью прокладки вокруг планеты кольца из проводника или сверхпроводника с подключением к мощному источнику энергии.
Взрыв на полярных шапках нескольких ядерных бомб. Недостаток метода - возможное радиоактивное заражение выделенной воды.
Помещение на орбиту Марса искусственных спутников, способных собирать и фокусировать солнечный свет на поверхность планеты для её разогрева.
Колонизация поверхности архебактериями и другими экстремофилами в том числе генно-модифицированными, для выделения необходимых количеств парниковых газов или получения необходимых веществ в больших объёмах из уже имеющихся на планете. В апреле 2012 г. Германский центр авиации и космонавтики сделал доклад о том, что в лабораторных условиях симуляции атмосферы Марса (Mars Simulation Laboratory) некоторые виды лишайников и цианобактерии после 34 дней пребывания приспособились и показали возможность фотосинтеза.
Способы воздействия, связанные с выводом на орбиту или падением астероида требуют основательных расчётов, направленных на изучение подобного воздействия на планету, её орбиту, скорость вращения и многое другое.

Необходимо отметить, что практически все вышеперечисленные действия по терраформированию Марса на текущий момент являются не более чем «мысленными экспериментами», так как в большинстве своём не опираются на какие-либо существующие в реальности и хотя бы минимально проверенные технологии, а по приблизительным энергозатратам многократно превышают возможности современного человечества. Например, для создания давления, достаточного хотя бы для выращивания в открытом грунте, без герметизации, наиболее неприхотливых растений, требуется увеличить имеющуюся массу марсианской атмосферы в 5-10 раз, то есть доставить на Марс либо испарить с его поверхности массу порядка 1017 - 1018 кг. Нетрудно посчитать, что, например, для испарения такого количества воды потребуется приблизительно 2,25*1012ТДж, что более чем в 4500 раз превышает всё современное ежегодное энергопотребление на Земле.

Связь с Землей

Для общения с потенциальными колониями может использоваться радиосвязь, которая имеет задержку 3-4 мин в каждом направлении во время максимального сближения планет (которое повторяется каждые 780 дней) и около 20 мин. при максимальном удалении планет. Задержка сигналов от Марса к Земле и наоборот обусловлена скоростью света. Однако использование электромагнитных волн (в том числе световых) не даёт возможности поддерживать связь с Землей напрямую (без спутника ретрансляции), когда планеты находятся в противоположных точках орбит относительно Солнца.

Возможные места основания колоний

Наилучшие места для колонии тяготеют к экватору и низменностям. В первую очередь это:

Впадина Эллада - имеет глубину 8 км, и на её дне давление наивысшее на планете, благодаря чему в этой местности наименьший уровень фона от космических лучей на Марсе.

можете ткнуть на картинку ниже=)


-Долина Маринера - не столь глубока, как впадина Эллада, но в ней наибольшие минимальные температуры на планете, что расширяет выбор конструкционных материалов.


Долина Маринера, 4500 км в длину, 210 в ширину и почти 11 км глубиной

В случае терраформирования первый открытый водоём появится в долине Маринера.

Колония (Прогноз)

Предполагаемый вид будущей колонии на Марсе


Хотя до сих пор проектирование марсианских колоний не зашло дальше эскизов, из соображений близости к экватору и высокого атмосферного давления их обычно планируют основывать в разных местах долины Маринера. Каких бы высот в будущем ни достиг космический транспорт, законы сохранения механики определяют высокую цену доставки грузов между Землёй и Марсом, и ограничивают периоды полётов привязывая их к планетарным противостояниям.

Высокая цена доставки и 26-месячные межполётные периоды определяют требования:
Гарантированное трёхлетнее самообеспечение колонии (дополнительные 10 месяцев на полёт и изготовление заказа). Его можно выполнить только накопив к первоначальному прилёту людей конструкции и материалы на территории будущей колонии.
Производство в колонии основных конструкционных и расходных материалов из местных ресурсов.
Это означает необходимость создания цементного, кирпичного, ЖБИ, воздушного и водного производств, а также разворачивания чёрной металлургии, металлообработки и оранжерей. Экономия продуктов питания потребует вегетарианства. Вероятное отсутствие коксующихся материалов на Марсе потребует прямого восстановления оксидов железа электролизным водородом - и, соответственно, производства водорода. Марсианские пылевые бури могут на месяцы сделать непригодной для использования солнечную энергетику, что при отсутствии природного топлива и окислителей делает единственно надёжной, на данный момент, только ядерную энергетику. Крупномасштабное производство водорода и впятеро большее содержание дейтерия во льдах Марса по сравнению с земными приведёт к дешевизне тяжёлой воды, что при добыче урана на Марсе сделает самыми эффективными и рентабельными тяжеловодные ядерные реакторы.

Высокая научная или экономическая продуктивность колонии. Похожесть Марса на Землю определяет большую ценность Марса для геологии , и при наличии жизни - для биологии. Экономическая выгодность колонии возможна исключительно при обнаружении крупных богатых месторождений золота, платиноидов или драгоценных камней.
Первая экспедиция должна еще разведать удобные пещеры, пригодные к герметизации и накачке воздуха для массового заселения городов строителями. Обживание Марса начнется из-под его поверхности.

Целью колонии нельзя считать лишь экономическую выгоду акционеров, но и путь к вечной жизни всей цивилизации.. И чем раньше человечество решится на колонизацию космоса, тем раньше будет освоена вся вселенная.
Другое действие от грот-колоний на Марсе будет в консолидации землян, подъем глобального осознания на Земле, планетарная синхронизация.

Физический образ человека перерождения поселенца - подсушенное от тройной потери веса тело, облегчение скелета и мышечной массы. Перемена походки, манер передвижения. Опасность набора веса. Смена режима питания к сокращению еды.
Питание колонистов может сместиться к молочно-кислому, продуктом от коров на местных гидропонных конвейерных пастбищах устроенных в шахтах.

Собрано из статей с любимой вики, иллюстрации взяты с сайтов интернета.

Снова для развития — скорость чтения взрослого человека 120-150 слов в минуту. В статье 4030 слов.

Обозреватель сайт узнал, как может выглядеть первая марсианская колония, с какими проблемами придется столкнуться первым людям на Красной планете и как их решить. Среди главных задач - доставка людей на планету, выращивание еды, добыча воды и борьба с радиацией.

27 сентября 2016 года Элон Маск рассказал о планах по колонизации Марса и о системе межпланетной транспортировки людей. Первый корабль с колонистами может отправиться на Марс уже в 2023−2025 году. Но готово ли человечество к заселению красной планеты и какие технологии помогут людям выжить на расстоянии 225 млн километров от Земли?

Суровая красота

Элон Маск не зря выбрал Марс в качестве второго дома для землян - это наиболее подходящая для жизни планета в Солнечной системе. Правда, условия там суровые: атмосфера Марса на 96% состоит из углекислого газа, температура колеблется от +20 °C до −127 °C, а уровень радиации во много раз выше, чем в окрестностях Чернобыля. Зато на планете много воды и углекислого газа, из которых можно делать пригодный для дыхания воздух и топливо для космических кораблей. Сутки на Марсе длятся почти столько же, сколько и на Земле, и гравитация в несколько раз меньше земной.

Первое марсианское селфи Curiosity

Доставка людей на Марс

Первая проблема, которую предстоит решить SpaceX - это доставка людей на Красную планету. До Марса 400 миллионов километров, и пассажирам придется лететь восемь месяцев, чтобы туда добраться. При этом нужно вылететь в определенный период, когда Земля и Марс сблизятся на минимальное расстояние.

«До сих пор наши попытки долететь до Марса были довольно жалкими. И американцы, и русские, и европейцы, и японцы, и китайцы, и индусы отправили туда 44 ракеты, бóльшая часть из которых либо потерялась, либо сломалась. Только треть миссий на Марс были успешными», - пишет автор книги «Как мы будем жить на Марсе» Стефан Петранек.

У Маска пока тоже не все ладно с безопасностью полетов. Falcon 9 первого сентября 2016 года стала второй за историю коммерческих запусков SpaceX. Перед этим компания потеряла ракету и груз для МКС в июне 2015 года - ракета взорвалась в воздухе из-за неполадок во второй ступени. Правда после этого SpaceX провела девять успешных запусков и у Маска есть еще время, чтобы проанализировать причины катастроф и избежать их в дальнейшем.

Сама схема полета на Марс будет выглядеть следующим образом: ракета с астронавтами поднимется на земную орбиту, после чего ее первая ступень вернется за Землю, в нее загрузят капсулу с топливом и снова отправят к ракете с астронавтами. После дозаправки корабль вновь вернет танкер с топливом на Землю и начнет свой путь в сторону Марса. По словам Маска, это будет самая крупная ракета из существующих - диаметр корабля составит 17 метров, а общая высота стартового комплекса - 122 метра.

В конце сентября 2016 года SpaceX успешно провела испытания метанового ракетного двигателя Raptor, который будет использоваться в системе межпланетных перелетов (ITS).

Маск планирует совершить первое беспилотное путешествие на Марс уже в 2018 году. После этого миссии на красную планету будут отправляться каждые два года в период максимального сближения планет. По оценкам NASA, этот проект обойдется Маску в $320 млн. Первые миссии будут беспилотными, люди полетят на Марс только через 8−10 лет в случае успешности тестовых полетов.

Что будут есть и пить марсианские колонисты

Вода стоит на первом месте в списке необходимых для выживания вещей, но доставлять ее с земли дорого и тяжело, поэтому колонистам придется добывать ее прямо на месте. Грунт на Марсе содержит до 60% воды, а по данным спутников многие кратеры имеют слои льда внутри. Ученые предполагают, что в дополнение к ледникам на Марсе могут течь и подземные воды. Правда, для их добычи потребуется специальное оборудование, которое остановит замерзание воды сразу же после того, как она поднимется на поверхность.


Снимок, сделанный Phoenix Lander в 2008 году. Белое вещество - это лед

Воду на Марсе можно добыть даже из атмосферы, которая часто имеет стопроцентную влажность. Осушитель воды был создан еще в 1988 году в Университете Вашингтона и может быть использован в суровых марсианских условиях.

Помимо воды, в NASA решили еще одну проблему - придумали, где взять воздух, которым будут дышать астронавты. Ученый Массачусетского технологического института (MIT) Майкл Хект разработал машину под названием Moxie - она всасывает марсианскую атмосферу и выкачивает кислород из углекислого газа. Следующий большой корабль NASA, запуск которого запланирован на 2020 год, будет оборудован одним из таких устройств. Тестовая версия Moxie сможет производить достаточно кислорода для обеспечения жизни одного человека.


С едой все несколько сложнее. По мнению Стефана Петранека, с помощью гидропоники (выращивании растений в воде с питательными веществами) можно будет получить не больше, чем 15−20% необходимой для пропитания астронавтов еды, остальную часть придется доставлять с Земли в высушенном виде.

Теоретически растения смогут расти в почве на основе марсианского грунта. Но ученые, изучившие образцы с марсоходов, пока что склоняются к выводу, что марсианская почва может оказаться слишком кислотной или слишком щелочной и потребует реабилитации и насыщения питательными веществами вроде азота. Поэтому на первых порах более надежным способом для выращивания растений станет гидропоника. При условии, что колонисты уже наладят добычу и хранение воды в жидком состоянии.


Биолог Анжело Вермюлен, проживший несколько месяцев в симуляторе марсианской среды на Гавайских островах, уверен, что первые посевы должны занимать мало места и быть максимально питательными. Например, это может быть фасоль или ставшая знаменитой после фильма «Марсианин» картошка. А вот зеленые салаты, укроп и петрушка станут для колонистов деликатесом - они малокалорийны и занимают много места.

Не стоит надеяться, что марсианские теплицы будут похожи на иллюстрации из советских журналов - скорее всего, они будут скрыты под толстым слоем почвы или в лавовых каналах, чтобы избежать воздействий губительной солнечной радиации.

Что касается удобрений для марсианских растений, то Джим Кливс из исследовательского института Blue Marble Space выразил мнение , что для подпитки почвы марсиане смогут использовать тела погибших на красной планете колонистов.

«Астронавты уже сейчас нарушают земные табу на тему отходов, употребляя переработанную мочу в качестве питьевой жидкости. Если нам удастся преодолеть табу смерти, активное компостирование человеческого тела будет не сильно отличаться от его захоронения в земле», - считает Джим.

Где жить

Следующий ключевой момент для выживания марсиан - это помещения, где они будут жить. Людям нужно будет защищаться не только от холода, но и от космической радиации. На Земле от излучения нас защищает плотная атмосфера и чем выше поднимаются люди, тем больше они подвержены воздействию космической радиации.

В отличии от Земли, на Марсе практически отсутствует магнитное поле и поселенцы получат немногим меньше радиации, чем в открытом межпланетном пространстве - от 400 до 900 миллизивертов облучения в год. Для сравнения, среднестатистический житель Земли в течении года накапливает в своем организме 3 миллизиверта, при 4000 мЗв развивается лучевая болезнь с большой вероятностью летального исхода, а 6000−7000 мЗв считается смертельной дозой.

Предварительные результаты радиационной обстановки на Марсе есть уже сейчас: так, марсоход Curiosity за 500 дней, проведенных на Марсе, получил суммарную дозу облучения в 1,01 зиверта. Но измерения Curiosity - не окончательные, так как радиационное окружение Марса может меняться в зависимости от солнечной активности как в большую, так и в меньшую сторону.

Из этого следует, что первые жилища колонистов, скорее всего, будут укрыты большим слоем реголита (марсианского грунта) или камня, или же вовсе закопаны под землю. Американский инженер и основатель «Марсианского общества» Роберт Зубрин допускает, что слой кирпичей из реголита в 3−4 метра толщиной сможет защитить людей от облучения.

Кстати, в NASA уже придумали технологию создания таких кирпичей - в агентстве собираются добавлять в них полимерный пластик и после этого засовывать в микроволновку. Многие сторонники колонизации Марса считают, что минералы с красной планеты могут годиться для производства пластмассы, также там можно добывать железо, медь и производить сталь. Но пока это все теория - на практике для этого понадобится огромное количество энергии и оборудования, доставка которого с Земли обойдется в десятки миллиардов долларов.

И, наконец, одежда. Профессор аэронавтики из Массачусетского технологического института уже более семи лет работает над созданием скафандра нового типа. Скафандр BioSuit по внешнему виду напоминает гимнастическое трико из многослойной ткани, плотно облегающей тело человека. В отличие от традиционного скафандра весом более 100 килограмм, BioSuit не сковывает движения космонавта, в нем можно даже ходить и бегать. А за счет давления на тело, BioSuit минимизирует атрофию мышц, вызванную длительным перелетом в условиях невесомости.


По замыслам Маска, марсианские колонисты не будут жить в информационном вакууме - он планирует подключить красную планету к земному интернету на высокой скорости. Для этого он намерен разместить на марсианской орбите несколько сотен спутников, которые будут связываться со спутниками на земной орбите и передавать через них данные. Маск оценивает стоимость проекта примерно в $10 млрд и планирует окупить его за счет прибыли от спутникового интернета на Земле.

Это только базовые вещи, благодаря которым человек может выжить на негостеприимной красной планете. Первые колонисты будут жить в спартанских условиях: с минимальным набором лекарств, обтираться влажными салфетками вместо душа и страдать от непривычной силы тяжести.

Дальнейшие прогнозы уходят уже в область полунаучной фантастики, ведь для сравнительно хорошей жизни понадобится терраформирование планеты, и здесь у человечества есть только предположения. Вот как описывает этот процесс в на Ted Стефен Петранек:

Для начала планету нужно нагреть. Марс невероятно холодный, потому что у него разреженная атмосфера. Ответ находится на южном и северном полюсах Марса, каждый из которых покрыт невероятным количеством замёрзшего углекислого газа - сухого льда. Если мы нагреем его, он испарится прямо в атмосферу и уплотнит атмосферу так, как он делает это на Земле.

И, как мы знаем, СО2 - это очень мощный парниковый газ. Я считаю, что нужно соорудить огромный солнечный парус и сфокусировать его - он работает как зеркало - на южном полюсе Марса. Так как планета вращается, этот парус нагреет весь сухой лёд, испарит его, и он выйдет в атмосферу. Это не займёт много времени: температура на Марсе начнёт расти меньше, чем через 20 лет.

В идеальный день на экваторе, в середине лета на Марсе температура может достигать 21 °C, но потом она падает до минус 40 °C ночью. То, к чему мы стремимся, - это быстрый парниковый эффект: температура поднимется достаточно, чтобы можно было увидеть, как весь лёд на Марсе - особенно подземный лёд - растает. Потом начнется магия.

Атмосфера станет толще, и всё наладится. Мы получим больше защиты от радиации, атмосфера будет согревать нас, согревать саму планету, мы получим проточную воду и сможем собирать урожаи. Потом пар пойдёт в воздух, формируя ещё один парниковый газ. На Марсе пойдут дождь и снег. И плотная атмосфера создаст достаточное давление, чтобы мы могли выбросить скафандры. Нам нужно всего 2,5 кг давления, чтобы выжить. Со временем Марс станет очень похож на Британскую Колумбию.

Глава компании SpaceX, американский бизнесмен Илон Маск, выступая в мексиканском городе Гвадалахара на 67-м конгрессе Международной федерации астронавтики, представил проект межпланетной транспортной системы ITS (Interplanetary Transport System), предназначенной для колонизации Марса. Предполагается, что на Красной планете будет построено полностью автономное поселение. Благодаря ITS в колонию на Марсе через полвека переберется миллион человек.

По мнению Илона Маска, человечеству, чтобы выжить, необходимо колонизировать другие миры. Марс для этого подходит лучше всего, поскольку условия на планете хоть и отдаленно, но все же похожи на земные. На соседней Венере слишком жарко, а спутники Юпитера и Сатурна, где также можно было бы создать колонию, расположены слишком далеко. Освоение этих лун, в частности, Энцелада, - уже следующий этап колонизации Солнечной системы.

Илон Маск является основателем компаний SpaceX (производит ракеты и космические корабли) и Tesla Motors (создает электромобили), а также инициировал проект Hyperloop (гибридной транспортной системы из вакуумного поезда и маглева). Он также принял участие в создании компаний PayPal (занимается электронными платежами) и SolarCity (солнечная энергетика).

Терраформирование Марса, то есть создание там максимально похожего на земной климата, по Маску, может занять несколько сотен лет. Это дело далекого будущего. Бизнесмен полагает, что в прошлом на Красной планете была более плотная атмосфера и текли водяные реки. Маск согласен с теми учеными, которые считают возможным вернуть Марс в его прежнее состояние. Тогда планета станет пригодной для земледелия без парников и жизни хотя бы примитивных микроорганизмов.

Сегодня, по оценкам, стоимость отправки человека на Марс - 10 миллиардов долларов. Маск считает, что и 10 миллионов - это слишком дорого. И предлагает программу удешевления полетов на Красную планету. Деньги на нее он намерен найти у частных партнеров и энтузиастов. Государство, судя по всему, в этом SpaceX не помогает. НАСА также, несмотря на сотрудничество со SpaceX по программе Международной космической станции, к проекту с осторожностью.

Маск предлагает создать пилотируемый корабль вместимостью 200 человек. На околомарсианской орбите должна накопиться тысяча таких аппаратов. Всего от Земли до Марса планируется около десяти тысяч перелетов. Путешествие займет не более 150 суток, а стоимость доставки полезного груза составит 140 тысяч долларов за одну тонну.

Концепция ITS основывается на нескольких ключевых технологиях - многоразовости, дозаправке кораблей на орбите и использовании марсианского топлива. В качестве топлива предлагается метан, который можно получать на Марсе из воды и углекислого газа. Все двигатели на ракетах останутся химическими - ионные или ядерные варианты не рассматриваются. На ракету ITS планируется поставить двигатель Raptor, у которого самое большое отношение тяги к массе. Этот агрегат недавно прошел испытания, в перспективном носителе предусмотрено 42 двигателя. Топливные баки для Raptor предполагается изготавливать из углеволокна.

Ракета для колонизации Марса будет самой крупной из когда-либо созданных человеком: диаметр - 12 метров, высота - 122 метра (вместе с головной частью). Первая ступень носителя ITS - это увеличенная первая ступень средней ракеты Falcon 9. Для ее возвращения на Землю после отправки корабля на околоземную орбиту потребуется около семи процентов всего топлива первой ступени.

С ракетой ITS, как отметил Маск, можно доставить груз в любую точку Земли максимум за 45 минут. Диаметр пилотируемого корабля, размещаемого в головной части, составит 17 метров, высота - 50 метров. Грузоподъемность - 450 тонн (вместе с топливом). Шесть двигателей работают в космосе, три - в атмосфере. После презентации ITS бизнесмен ответил на вопросы присутствующих в зале.

Из его ответов стало известно, что денег на самостоятельное финансирование проекта ITS у SpaceX нет - компания зарабатывает исключительно на заказах НАСА и коммерческих спутниках. Однако ситуация может поменяться. Если в настоящее время из пяти тысяч сотрудников SpaceX над ITS работают около 50 человек, то с течением времени, когда инвестиции в проект вырастут до 300 миллионов долларов в год, бизнесмен надеется резко увеличить их количество.

На вопрос россиянки Анастасии о привлечении иностранных граждан к проекту Маск ответил так: в программе ITS может участвовать любой желающий. Но для этого, помимо таланта, нужна еще и грин-карта. Для сравнения, в компании Tesla ситуация проще - там четверть сотрудников - иностранцы.

Маск подтвердил свое намерение отправить в 2018 году к Марсу при помощи тяжелой ракеты Falcon Heavy, испытания которой намечены на осень 2016 года, беспилотную миссию на корабле Dragon V2 (расчетной вместимостью до семи человек). После этого он планирует отправлять на Красную планету аппараты каждые 26 месяцев: две миссии в 2020 году, как минимум одну в 2022-м и, вероятно, пилотируемую миссию через два года с высадкой на планету в 2025 году. Пуски планируется осуществлять на разрабатываемой ракете-носителе Falcon Heavy, а старт 2020 или 2022 годов - уже на ракете ITS.

Первый марсианский корабль в SpaceX собираются назвать Heart of Gold. Маск признал: к сожалению, нет никаких гарантий того, что первые колонизаторы смогут вернуться на Землю. Путешествие на Марс он традиционно сравнил с открытием и заселением Америки. От себя добавим, что в Европе такие переселения, как и предшествующее им открытие Америки, многими считались безумием. Станет ли Илон Маск новым Христофором Колумбом или окажется расчетливым бизнесменом с богатой фантазией - покажет время и его дела.